

World Bank & Government of The Netherlands funded

Training module # WQ - 12

How to measure dissolved oxygen (DO)

Table of contents

		Page
1	Module context	2
2	Module profile	3
3	Session plan	4
4	Overhead/flipchart masters	5
5	Evaluation	12
6	Handouts	14
7	Additional handouts	16
8	Main text	17

1 Module context

This module concerns laboratory determination of dissolved oxygen in water. Modules in which prior training is necessary to complete this module successfully and other available, related modules in this category are listed in the table below.

While designing a training course, the relationship between this module and the others, would be maintained by keeping them close together in the syllabus and place them in a logical sequence. The actual selection of the topics and the depth of training would, of course, depend on the training needs of the participants, i.e. their knowledge level and skills performance upon the start of the course..

No.	Module title	Code	Objectives
1	Basic water quality concepts	WQ -1	 Discuss the common water quality parameters List important water quality issues
2	Basic chemistry concepts	WQ -2	 Convert units from one to another Discuss the basic concepts of quantitative chemistry Report analytical results with the correct number of significant digits.
3	How to prepare standard solutions	WQ -4	 Select different types of glassware Use an analytical balance and maintain it. Prepare standard solutions.
4	The chemistry of dissolved oxygen measurement	WQ -11	 Appreciate significance of DO measurement Understand the chemistry of DO measurement by Winkler method

2 Module profile

Title : How to measure dissolved oxygen (DO)

Target group : HIS function(s): Q1, Q2, Q3, Q5

Duration : One session of 150 min

Objectives : After the training the participants will be able to:

• Measure dissolved oxygen in water samples

Collection and store samples with all precautions.

Key concepts : • Winkler method

Sampling procedure

Effect of storage

Training methods : Demonstration and laboratory exercises

Training tools required

Chemicals and glassware required to conduct DO

analysis as per SAP

DO sampler

Support of a chemistry laboratory

Handouts : As provided in this module

Further reading and references

• Chemistry for Environmental Engineering, C.N. Sawyer, P.L. McCarty and C.F. Parkin. McGraw-Hill, 1994

 Standard Methods: for the Examination of Water and Wastewater, APHA, AWWA, WEF/1995. APHA

Publication

3 Session plan

No	Activities	Time	Tools
No 1	 Activities Preparations Use your ToT-1 checklist. Prepare all DO reagent solutions according to SAP in advance, including the primary standard and sodium thio-sulphate titrant. Prepare sufficient volume of samples in buckets as follows: Sample A: tap water stored overnight. Sample B: tap water stored overnight and contaminated with sewage or sullage at the rate of 10 mL/L on the day of the experiment. Sample C, Pond water with some algae in 	Time	Tools
	 Prepare siphoning tubes of 6 to 10 mm dia. flexible tubing attached to small lengths of glass tubing at each end, one each for the three samples. 		
2	 DO determination Allow participants to read SAP for measuring DO Explain/summarise the Winkler method Explain reagents used and the steps involved Demonstrate DO determination 	30 min	Handout, glassware and reagents OHS
3	 Practice Describe the exercise Divide the class in working group of two persons each Let participants siphon samples in BOD bottles Half the class will store the sample C bottles in dark and the other half in light, sunshine if possible Let all participants standardise sodium thiosulphate and measure DO. Sample C bottles should be analysed in the last. 	90 min	Handout
4	Wrap up Ask participants to write report Discuss measurement results Summarize main points of DO measurement	30 min	

4 Overhead/flipchart masters

OHS format guidelines

Type of text	Style	Setting
Headings:	OHS-Title	Arial 30-36, Bold with bottom border line (not: underline)
Text:	OHS-lev1 OHS-lev2	Arial 26, Arial 24, with indent maximum two levels only
Case:		Sentence case. Avoid full text in UPPERCASE.
Italics:		Use occasionally and in a consistent way
Listings:	OHS-lev1 OHS-lev1-Numbered	Big bullets. Numbers for definite series of steps. Avoid roman numbers and letters.
Colours:		None, as these get lost in photocopying and some colours do not reproduce at all.
Formulas/ Equations	OHS-Equation	Use of a table will ease alignment over more lines (rows and columns) Use equation editor for advanced formatting only

Measuring dissolved oxygen (DO)

- 1. Standard Analytical Procedure
- 2. Demonstration
- 3. Exercises
- 4. Reporting

Measuring DO: Standard Analytical Procedure

Read Standard Analytical Procedure

Exercise: determine DO of samples

- Work in pairs
- Reagents provided
- Measure DO in samples A, B & C
- Use siphon to fill bottles
- Record findings
- Calculate
- Report

Exercise: record findings

- Normality of primary standard =
- Volume primary standard taken for titration =
- Volume of sodium thiosulphate titrant used =
- Therefore, morality of sodium thiosulphate =

Report findings

Sample	Volume titrated, mL		Volume thiosulphate used, mL		DO, mg/L	
	initially	after storage	initially	after storage	initially	after storage
Α						
В						
С						

Exercise: report

- Dissolved oxygen (DO) in water samples
- Effect of storage of sample on DO value
- Possible reasons for change in DO value during storage

5 Evaluation

6 Handouts

Measuring dissolved oxygen (DO)

- 1. Standard Analytical Procedure
- 2. Demonstration
- 3. Exercises
- 4. Reporting

3. Measuring DO: Standard Analytical Procedure

Read Standard Analytical Procedure

Exercise: determine DO of samples

- · Work in pairs
- Reagents provided
- Measure DO in samples A, B & C
- Use siphon to fill bottles
- Record findings
- Calculate
- Report

Exercise: record findings

- Normality of primary standard
- Volume primary standard taken for titration =
- Volume of sodium thiosulphate titrant used =
- Therefore, morality of sodium thiosulphate =

Report findings

Sample	Volume titrated, mL		Volume thiosulphate used, mL		DO, mg/L	
	initially	after storage	initially	after storage	initially	after storage
Α						
В						
С						

Exercise: report

- Dissolved oxygen (DO) in water samples
- Effect of storage of sample on DO value
- Possible reasons for change in DO value during storage

7 Additional handouts

These handouts are distributed during delivery and contain test questions, answers to questions, special worksheets, optional information, and other matters you would not like to be seen in the regular handouts.

It is a good practice to pre-punch these additional handouts, so the participants can easily insert them in the main handout folder.

8 Main text

		Contents
1.	Aim	1
2.	Method	1
3.	Observations & calculations	1
4.	Report	2
	SAP for Dissolved oxygen	3

How to measure dissolved oxygen (DO)

1. Aim

- 1.To determine dissolved oxygen (DO) in water
- 2.To study the effect of storage on the DO content of a water sample

2. Method

- a. Collect two samples from each of the buckets marked A, B and C in 300 mL DO bottles. For filling the DO bottles use a siphon holding the exit end near the bottom of the bottle to avoid aeration. Allow about 50 mL sample to overflow before stoppering the bottles in each case. Avoid entrapment of air bubble while stoppering.
- b. Standardise sodium thiosulphate titrant and determine the DO in one bottle of each sample, according to the Standard Analytical Procedure for Dissolved Oxygen, soon after collection. Store the other bottle for a period of time and determine the DO as directed by the instructor.

3. Observations & calculations

Standardisation of sodium thiosulphate:

Normality of primary standard =

Volume primary standard taken for titration =

Volume of sodium thiosulphate titrant used =

Therefore, molarity of sodium thiosulphate =

DO determination in samples:

Sample	Volume titrated, mL		Volume thiosulphate used, mL		DO, mg/L	
	initially	after storage	initially	after storage	initially	after storage
Α						
В						
С						

4. Report

Write your report in which the following aspects should be addressed:

- Need for frequent standardisation of the secondary titrant used
- Care in sampling for DO measurement
- Effect of storage of sample on DO value
- Possible reasons for change in DO value during storage
- What is the biochemical oxygen demand (BOD) of a water sample and on what factors does it depend?